August 19, 2015

3-D Hits Your Dashboard

By Chris Round, Technical Sales Manager, Cockpit Electronics

Peek down the aisle of your favorite electronics store today and your eyes are likely to pop. Your HDTV that was a leading-edge entertainment center just a year or two ago already is tumbling over the edge of obsolescence.

Today the banner of innovation flies over 65-inch 4K Ultra HD smart TVs, with four times the pixel count of HD. Moreover, the same TV set also supports 3-D image – along with a Web browser, apps and a voice-activated remote. In the next aisle, you’re likely to discover new virtual-reality devices for mobile phones that immerse consumers in video environments.

Now, sit in your car and compare those with your vehicle displays. Even if your car uses colorful digital graphics, most displays show a flat, two-dimensional image.

Take heart. The auto industry is working hard to adopt the trends erupting in consumer electronics. Some automakers are designing displays to look more like consumer tablets, no longer embedding them in the instrument panel. For both driver information and infotainment, they are moving away from traditional layered menu systems to more of a flat consumer style interfaces with icons or tabs.

However, making the instrument cluster more interesting and customizable has been more challenging. The instrument cluster needs to convey information at a glance so designers have held onto 2-D and mechanical gauges to which drivers are accustomed. Yet, updated approaches soon will change even the venerable speedometer and fuel gauge.

A traditional cluster incorporates two large mechanical gauges with moving pointers, separated by a small to medium size display that renders 2-D images. However, many vehicle manufacturers are asking for enhanced graphical image quality with increased resolution. This is perceived to provide better quality, as users now expect the same image quality as high-end consumer devices.

With the advent of even more advanced driver assistance systems, automotive manufacturers need to provide more information to the driver, which necessitates larger displays. This has resulted in the adoption of fully reconfigurable instrument clusters where traditional mechanical gauges, small displays and warning telltales are replaced by one larger TFT display – typically 12.3 inches. Some carmakers have started presenting the graphics using 3-D rendering, however most have tried to replicate a traditional mechanical gauge look and feel. The challenge with 3-D rendering is that that objects assume more of a 3-D appearance when they are moving around the screen, because the shadows, reflection and lighting on the object is changing; the eye is tricked into thinking it is a solid object. Traditional gauges and most instrument cluster images are stationary, so it is difficult to make those objects look truly three-dimensional in a 2-D display.

3-D displays have been available for some time and have been used in the consumer industry, but have not been adopted in the automotive industry due to a number of constraints with the technology such as eye strain, limited or restricted angle viewing and potential nausea. Some even require glasses which would be unacceptable for an automotive application.

A new multi-layer display technology has been developed that allows stationary objects to appear three dimensional and solid. This multi-layer cluster uses the same thin-film-transistor (TFT) screen technology used in TVs, smartphones and cars but has two panels—with one screen placed in front of the other. A proprietary graphics rendering plug-in partitions shading and color between the two layers to make the objects appear solid and three-dimensional. The dial of the gauge may be on the background TFT, while the pointer and rim are depicted on the front screen, producing the 3-D effect. The current resolution of this multi-layer cluster is 1280 x 480 per screen, and within two years it will likely increase to 1920 x 720.

This technology not only provides solid 3-D looking objects, but has the benefit of being totally reconfigurable so the graphics and layout can be completely changed at the touch of a button. The cluster can be customized by the automaker for different vehicle models and brands, and potentially by the driver to match his or her preferences.

This 3-D cluster is only the beginning of automotive three-dimensional graphics design. As autonomous vehicles begin cruising the highways in future years, the cluster will likely become more immersive – showing buildings, landscapes and obstacles surrounding the vehicle. When steering wheels are not needed, the cluster screen can display 3-D movies, games or video calls.

When you drive away from the electronics store, be kind to your old-school in-vehicle electronics; it’s on its way out, too.

Chris Round is a technical sales manager at Visteon. He has 26 years of experience in the automotive electronics field and has bachelor’s and master’s degrees in engineering. He is responsible for developing instrument cluster and HUD design proposals for Visteon’s customers as well as presenting new product technology. Chris is an active member of the SAE and enjoys motorsports as well as mountain and road biking.

July 28, 2015

Automaker-Specific Apps Can Co-Exist With Those of Tech Giants
Integrated app that perfectly positions car in garage is just one example

By Brian Brackenbury
Senior Manager, Infotainment & Connectivity

There was a time – albeit brief – when businesses and consumers thought the Internet was just a fad. The same attitude existed regarding social media in its early days. When the iPad was introduced, many people just scratched their heads over why they needed one. Today, no one doubts the importance and potential impact of the latest tech revolution – IoT (Internet of Things). For the first time, developers and consumers are tying together not just virtual worlds but also real, physical things – allowing these objects to communicate and interact with each other.

The Internet of Things is making new connections inside cars and trucks – which is where Visteon innovations surrounding smartphone apps can be found. Today’s infotainment systems can replicate your smartphone’s content onto displays inside your vehicle. What they have not been able to do is combine information from your phone with data from your vehicle to make driving smarter and to provide real-time feedback based on where and how the car is operating. Now that’s all changing.

Visteon’s latest innovation allows automakers to offer their own specific apps that take advantage of vehicle data. Utilizing a new cloud-based app framework, jointly developed with OpenCar, Smartphone app developers can easily migrate their existing apps into OEM-specific vehicles, and take advantage of the wealth of data available to the typical connected infotainment system.

To illustrate the added capability that this type of connection can offer, Visteon worked with Chamberlain to integrate and enhance its MyQ™ smartphone app into a production Infotainment system. MyQ™ currently allows drivers who are away from their homes to determine if the garage door was left open and, if so, to close it remotely. Visteon has developed an app that can combine data from the garage door and vehicle, as well as OEM-specific graphics and HMI, resulting in the vehicle-integrated MyQ™ Garage app.

The MyQ™ Garage app has vehicle-unique features, such as Park Assist.  This feature allows a driver to perfectly position a car in the garage, forgoing the old fashioned tennis ball strung from the rafters. As the car enters the garage, the front tires cross the opener’s floor-level safety beam. Vehicle wheel sensors count the revolutions and relay data to the app showing a real-time graphic on the central display, simulating the car’s position and where to stop. As the system is used, it learns the preferred parking location.

Another example of this technology’s usefulness involves geo-fencing. Within an owner’s Web portal, a driver creates a virtual fence around his or her home. As the vehicle passes this virtual fence, the vehicle navigation system is triggered to check if the garage door is open. If it is, a message is automatically shown on the car’s display, asking if the driver wants to close the door.

Such detailed real-time feedback is not possible with standard smartphone apps, or their in-vehicle screen replication counterparts, such as Apple CarPlay, Android Auto or MirrorLink. While these are all proven ecosystems, that are an everyday convenience for most smartphone users—they do not offer the consumer the complete set of capabilities.

Visteon is committed to giving automakers and consumers the content and features they desire in their vehicles. OEM-specific app stores can co-exist with the current Tech Giants, providing connected apps that inject the hidden intelligence within the vehicle into apps for a new level of smart driving.

Demonstration of the Connected Services: Application Ecosystem

Brian Brackenbury is a senior manager in the Technology Office, leading new business pursuits for infotainment, connectivity and telematics. Prior to his current role, Brian led the global engineering activity to launch the MazdaConnect infotainment system, as well as leading core platform development for the connectivity domain. He received his BSEE from Michigan State University and his MSEE degree from the University of Michigan.

July 8, 2015

Anticipating Trends Today for Products Tomorrow

By Stephan Preussler 

Understanding consumer trends is an often overlooked, yet very critical, consideration for automakers and suppliers during the product development stage. Awareness of trends is essential to delivering products that meet the unknown but anticipated demands of existing and future consumers.

To fully grasp what future consumers may want, an analysis of change processes and trends (inside and outside the auto industry) is required. To predict the shape of the world for years to come, researchers consider the view through the lens of social, technological, economic, environmental and political grounds (“STEEP”). This allows them to anticipate what consumers will want before those desires reveal themselves.

The purpose of advanced trend analysis is to take advantage of what’s occurring in this fast-moving world and to capitalize on it — or at least avoid being caught unaware by it – thus adopting a mindset to better prepare for the future. Such analysis incorporates various tools that can interpret signals and visualize possible scenarios – always with the caveat that no tool can guarantee to predict the future accurately.

The automotive industry is transitioning into a new age of mobility. Previously, mobility mainly encompassed motorized individual transport, but today we can decide which means of mobility may be the better choice – mainly due to two developments:

  1. Digitalization – This has spawned the creation of traffic data universes to manage mobility. Systems assess participants, locations, speeds and mediums used. Localization, detection and real-time processing have transformed traffic into a spontaneous self-controlling system.
  2. Technology – This has created an increased awareness about alternative transport options never available before. This includes varying drivetrains (e.g. electric or fuel-cell vehicles) as well as the wider use of a variety of mobility services (e.g. ride sharing and Uber) that are transport medium neutral without being fixed to specific modes of mobility. Before, during and after transit, users receive real-time recommendations how to most efficiently reach their destinations.

As a result, lifestyles become more sustainable – and we know from research that consumers do not want to be less mobile, but more intelligently mobile. In the near future transportation options will be more attractive, because of technology and the variety of mobility services it offers. Consequential outcomes are new business models such as the transformation of the auto industry from a vehicle manufacturer to a mobility services provider.

The car no longer is an isolated function as it serves several purposes. Vehicles will be permanently online – sending and receiving data. Connectivity allows the implementation of new features – such as display styles, interactions and user recognition (personalization) – so the ever-more important rich user experience becomes possible.

Upgradeability is another current industry challenge driven by customer expectations – which in turn is defined by the constant stream of upgrades typical of the digital ecosystem (smartphones, for instance). Architectures and platforms are required to perform these updates, upgrades and enhancements. This explains the changing landscape of the auto industry, with collaborations springing up that involve non-traditional suppliers from other industries.

Gaining an early awareness of trends, and applying that insight in the product development process is necessary to meet constantly changing market and consumer demands. This understanding of future consumer desires – and the dynamics of the automotive market-- is a key driver to remaining competitive.

Stephan Preussler is responsible for advanced trends analysis at Visteon. He has held various positions in marketing, innovation and concept vehicle builds during his 15-year career in the automotive industry.